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ABSTRACT: Vegetation parameters for the Variable Infiltration Capacity (VIC) hydrologic model were recently up-
dated using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Previous work showed
that these MODIS-based parameters improved VIC evapotranspiration simulations when compared to eddy covari-
ance observations. Due to the importance of evapotranspiration within the Colorado River basin, this study provided
a basin-by-basin calibration of VIC soil parameters with updated MODIS-based vegetation parameters to improve
streamflow simulations. Interestingly, while both configurations had similar historic streamflow performance, end-of-
century hydrologic projections, driven by 29 downscaled global climate models under the RCP8.5 emissions scenario,
differed between the two configurations. The calibrated MODIS-based configuration had an ensemble mean that sim-
ulated little change in end-of-century annual streamflow volume (10.4%) at Lees Ferry, Arizona, relative to the his-
torical period (1960–2005). In contrast, the previous VIC configuration, which is used to inform decisions about future
water resources in the Colorado River basin, projected an 11.7% decrease in annual streamflow. Both VIC configura-
tions simulated similar amounts of evapotranspiration in the historical period. However, the MODIS-based VIC con-
figuration did not show as much of an increase in evapotranspiration by the end of the century, primarily within the
upper basin’s forested areas. Differences in evapotranspiration projections were the result of the MODIS-based vege-
tation parameters having lower leaf area index values and less forested area compared to previous vegetation esti-
mates used in recent Colorado River basin hydrologic projections. These results highlight the need to accurately
characterize vegetation and better constrain climate sensitivities in hydrologic models.

SIGNIFICANCE STATEMENT: Understanding systemic changes in annual Colorado River basin flows is critical for
managing long-term reservoir levels. Single-digit percentage decreases have the potential to degrade the regions’ water
supply, hydropower generation, and environmental concerns. Hydrology projections under climate change have largely
been based on simulations from the Variable Infiltration Capacity model. Updating the model’s vegetation representa-
tion based on updated satellite information highlighted the sensitivity of the hydrologic projections to the models’ vegeta-
tion representation primarily within forested areas. This updated model did not increase in evapotranspiration by the end
of the century as much as previous simulations. This increased the mean and ensemble spread of the projected streamflow
changes, emphasizing the need to properly characterize the hydrologic model’s vegetation parameters and better con-
strain model climate sensitivity.
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1. Introduction

Regional hydrologic changes in a future climate are com-
monly estimated using a system of models, termed the impact

modeling chain (Bosshard et al. 2013). The impact modeling
chain uses various representative concentration pathways
(RCPs), global climate models (GCMs), downscaling methods,
and hydrologic models to estimate a spread of future projec-
tions in streamflow, snow water equivalent (SWE), and evapo-
transpiration (ET). The choices in hydrologic model structure
(Addor et al. 2014; Vano et al. 2012; Vaze et al. 2010) and pa-
rameterization (Bastola et al. 2011; Mendoza et al. 2015; Merz
et al. 2011) have been identified as important decisions when
evaluating the hydrologic change signal, especially in water
limited environments such as the Colorado River basin, where
evapotranspiration is the dominant process within the water
balance (Chegwidden et al. 2019).

Christensen et al. (2004) and Christensen and Lettenmaier
(2007) pioneered the top-down, impact modeling chain approach
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to assess hydrologic changes in the Colorado River basin us-
ing the Variable Infiltration Capacity (VIC) hydrologic model
(Hamman et al. 2018; Liang et al. 1994). They showed that by
the end of the twenty-first century (2070–99), annual streamflow
volume was projected to decrease by 8%–17% relative to the
historical period (1950–99). Since these early studies, subsequent
reports and journal articles have also used VIC with different
emission scenarios, GCMs, downscaling methods, and differ-
ent versions of VIC (Gao et al. 2011; Harding et al. 2012;
U.S. Bureau of Reclamation 2011a; Brekke et al. 2014; Vano
et al. 2020).

A previous journal article (Vano et al. 2014) and the most
recent state of the science report on the climate and hydrology
in the Colorado River basin (Lukas and Payton 2020) worked
to reconcile and summarize studies since Christensen et al.
(2004). These summaries also include studies that use hydro-
logic models other than VIC (e.g., Alder and Hostetler 2019;
Ficklin et al. 2013), or adopt alternative approaches for impact
modeling (Lehner et al. 2019; McCabe and Wolock 2007; Milly
and Dunne 2020; Seager et al. 2007, 2013; Udall and Overpeck
2017). Most of these studies showed a projected ensemble
mean that had annual streamflow volume decrease by the
mid-twenty-first century with a range from210% to240%.

Some generalized and notable differences across the range of
efforts are that in the upper Colorado River basin, the Coupled
Model Intercomparison Project phase 5 (CMIP5) collection of
GCMs showed a multimodel mean increase in precipitation
compared to the previous CMIP (CMIP3; Brekke et al. 2013).
In addition, studies that did not incorporate downscaling and
used output directly from the GCMs (Milly and Dunne 2020;
Seager et al. 2013), or studies that did not account for pro-
jected precipitation changes (Udall and Overpeck 2017),
found stronger decreases in annual streamflow. The rela-
tively coarse representation of topography in GCMs led to a
smaller or nonexistent snowpack, increased evapotranspira-
tion, and decreased streamflow by the end of the century
(Lukas and Payton 2020; Milly and Dunne 2020). Furthermore,
assuming no change in precipitation, due to disagreement in
GCM precipitation projections, streamflow projections show a
decrease of approximately 6.5% 8C21 of warming (Udall and
Overpeck 2017). Under the RCP8.5 emissions scenario, this
sensitivity leads to a decrease of 235% by the end of the
century (Lukas and Payton 2020; Udall and Overpeck
2017). Therefore, projected increases in precipitation, as shown
by the CMIP5 multimodel ensemble mean, offsets losses due to
warming.

Since the study by Christensen et al. (2004), gridded meteo-
rological datasets have become available at a higher resolution,
and so too have the parameters used for the VIC hydrologic
model (Bohn and Vivoni 2019; Livneh et al. 2013). Simulta-
neously, the VIC code has changed (Bohn and Vivoni 2019;
Brekke et al. 2014; Hamman et al. 2018), and new vegetation
parameters have become available based on advancements in
remotely sensed vegetation characteristics (Bohn and Vivoni
2016, 2019).

New vegetation parameters include changes to the leaf area
index and have introduced fractional canopy areas within VIC
vegetation tiles. These changes have led to more physically

realistic evapotranspiration simulations by including soil evap-
oration in addition to transpiration within VIC’s vegetation
tiles. Furthermore, these changes showed improved simula-
tions of total evapotranspiration compared to eddy covariance
towers within the geographic region impacted by the North
American monsoon (southwestern United States and western
Mexico) (Bohn and Vivoni 2016). The importance of evapo-
transpiration in water limited regions like the Colorado River
basin along with the prevalent use of VIC in Colorado River
basin climate change studies motivated a reassessment of fu-
ture hydrologic projections with this new version of the VIC
model and its parameters. The VIC model had not been sys-
tematically recalibrated since the 2004 study, and updates to
the model, its forcings, and to unregulated streamflow datasets
in the Colorado River basin compel a model recalibration ef-
fort as part of this reassessment.

Here, we incorporated updated vegetation parameters
(Bohn and Vivoni 2016, 2019) and recalibrated VIC soil pa-
rameters within the Colorado River basin using streamflow
observations and the most recent version of the VIC model,
VIC 5.1.0 rc2 (Hamman et al. 2018). The recalibrated VIC
model with the updated vegetation dataset was then used to
evaluate how the change in vegetation datasets, code, and soil
parameters affect hydrologic projections using 29 GCMs un-
der the RCP8.5 emissions scenario with the localized con-
structed analog (LOCA) downscaling technique (Pierce et al.
2014). A single emissions scenario (RCP8.5) was chosen over
other emissions scenario to focus on how the changes to the
VIC configurations affect the hydrologic projections and to
stress test the sensitivity of the Colorado River basin by repre-
senting a high emissions, high-risk scenario, with the largest
changes in temperature and hydrologic fluxes (Lukas and
Payton 2020; Vano et al. 2020). In doing so, we focus on how
the end-of-century hydrologic projections change compared
to a VIC configuration used in three recent reports (Lukas
and Payton 2020; U.S. Bureau of Reclamation 2021; Vano
et al. 2020). This paper specifically focuses on changes in sim-
ulated evapotranspiration, routed streamflow, and SWE.

2. Data and methods

a. Study domain

Streamflow in the Colorado River basin (Fig. 1) is largely
driven by snowmelt (;70%) (Li et al. 2017), with about 50%
of the annual precipitation in the form of snow (Rumsey et al.
2015). Estimated losses due to evapotranspiration can account
for 75%–98% (5% and 95% quantiles) of annual precipita-
tion depending on the location, with the mountains in the up-
per Colorado River basin having the highest runoff ratios.
The Colorado River basin as a whole has 74 km3 (60 million
acre feet) of total reservoir storage. These 74 km3 equal
around 4 times the annual streamflow volume that passes
through Lees Ferry, Arizona (AZ), the legal compact point
separating the upper and lower portions of the basin. The
large reservoir storage capacity provides a buffer to shield
stakeholders against interannual variability in streamflow vol-
umes, but understanding potential systemic changes in annual
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flows is nonetheless critical. Such changes are manifested over
the long term in reservoir levels, with even single digit per-
centage decreases having the potential to degrade the regions’
water supply, hydropower generation, and environmental out-
comes. Between 2000 and 2019 average naturalized annual
flow at Lees Ferry has been 15% of the long-term average
(1906–2019) (Lukas and Payton 2020), and total water storage
capacity in the Colorado River basin is 40% of capacity. This
has led to recent water delivery cutbacks for Arizona, Nevada,
andMexico. Therefore, projected decreases in streamflow would
likely lead to further water usage cutbacks. Meanwhile, shifts
in the timing of peak streamflow are important for reservoir
operations and water users that depend on direct diversion
for irrigation, as well as instream flow augmentation pulses to
support aquatic habitat.

b. Historical observations

1) STREAMFLOW DATA

We used daily streamflow observations from 37 USGS
gauges located in the Colorado River basin’s headwaters (Table
S1 in the online supplemental material). Furthermore, we used
naturalized monthly streamflow at 29 additional locations
(Table S2), totaling to 66 calibration points for VIC (Fig. 1). In
the headwater basins, we selected gauges for calibration based
on following criterion: 1) USGS gauges classified as a Hydro-

Climatic Data Network 2009 (HCDN-2009) gauge (Falcone
2011; Lins 2012), which excludes notable anthropogenic activity,
such as artificial storage and diversions, or any other activity
that would significantly alter the natural streamflow, and
2) streamflow record is complete between 1990 and 2009. The
streamflow data at all the headwater basins are available in the
Catchment Attributes and Meteorology for Large-Sample Stud-
ies (CAMELS) dataset (Newman et al. 2014, 2015). At main-
stem reservoir locations we used naturalized monthly flow data,
which removed the effect of consumptive use, transbasin diver-
sions, and reservoir operations from the streamflow record
(Prairie and Callejo 2005). Along the Gila River and its tributar-
ies within the lower Colorado River basin, routed streamflow
was only calibrated at a limited number of USGS gauges that
were not affected by water withdrawals and storage. Naturalized
flow records were not used because of methodological inconsis-
tencies in the consumptive use estimates and loss reports. Addi-
tionally, the Gila River joins the mainstream of the Colorado
River downstream of all significant storage reservoirs in the
basin (U.S. Bureau of Reclamation 2012, 2011b).

2) METEOROLOGICAL DATA

Livneh et al. (2013) 1/168 gridded daily meteorological data
were used for model calibration. Livneh et al. (2013) data
were used in the calibration of VIC to be consistent with

FIG. 1. Colorado River basin in the southwestern United States. Black polygons within the Col-
orado River basin depict watershed delineations for naturalized flow gauge sites and USGS head-
water gauges. The upper Colorado River basin consists of three main watersheds above Lees
Ferry, AZ; the Green River; upper Colorado River; and San Juan River subbasins. Each subbasin
accounts for 34%, 42%, and 13% of the historic naturalized streamflow at Imperial Dam, respec-
tively. Brown boxes highlight mountain ranges specifically referenced later in the text.
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LOCA’s training data (section 2c). The Livneh et al. (2013)
data included daily precipitation, minimum and maximum
daily air temperature, and daily wind speeds. More details on
the Livneh et al. (2013) data are provided in the supplemental
material (Text S1) (Livneh et al. 2013; Daly et al. 2008). Daily
precipitation, temperature, and wind speeds were temporally
disaggregated to 3-h intervals using MetSim (Bennett et al.
2020). MetSim was also used to estimate 3-h short- and long-
wave radiation, humidity, and air pressure. MetSim is a Python-
based wrapper for the MTCLIM algorithm (Bohn et al. 2013),
which was incorporated as an internal routine in VIC prior to
VIC version 5.

c. Global climate models and downscaled meteorological
projections

We used 29 GCMs from CMIP5 (Table S4). The GCMs were
bias corrected and downscaled using LOCA (Pierce et al. 2014).
LOCAdata were provided at a 1/168 grid spacing (;7 km3 7 km)
and provided daily estimates of precipitation and temperature.
LOCA used a frequency-dependent bias correction and also
notably preserves the predicted precipitation and temperature
change signal from the GCM (Pierce et al. 2015), rather than
allowing it to be altered in the downscaling process. LOCA
uses spatial analogs to relate regional patterns of precipitation
or temperature to a downscaled local representation. A collec-
tion of analogs is identified for a given region by finding the
best matches between the bias corrected GCM climate and
coarsened observations. The regions are defined based on the
autocorrelation in observed climate, so that only local grid cells
identified as related to a given point are used in the matching.
From this collection, a small region immediately adjacent to
the grid cell to be downscaled is used to select a single “best”
analog date, and the high-resolution data from the observations
are used at that point. LOCA is trained on the Livneh et al.
(2013) observational dataset.

LOCA data have been used in the Fourth National Climate
Assessment (USGCRP 2018) and the 2021 SECURE (Science
and Engineering to Comprehensively Understand and Respon-
sibly Enhance) Water Act report (U.S. Bureau of Reclamation
2021). Furthermore, the LOCA climate and hydrology datasets
were featured in the most recent state of the science report for
the Colorado River basin (Lukas and Payton 2020) and in a
recent Bureau of Reclamation report (Vano et al. 2020). We
used 6 more GCMs from the LOCA ensemble than Vano et al.
(2020), which selected downscaled GCMs based on availability
for both LOCA and the bias corrected and spatial disaggrega-
tion method (BCSD) (Wood et al. 2004). Here, we only focus
on using the LOCA downscaled data and therefore the results
presented herein do not match exactly with those from Vano
et al. (2020).

d. Hydrologic model datasets

We used two sets of VIC model parameters (Table 1). Each
set had different vegetation and soil parameters. Both sets of
VIC model simulations were forced using the same historical
meteorological data [section 2b(2)] and the same number of
GCMs, downscaled using LOCA (section 2c).

One set contains vegetation and soil parameters primarily
from Livneh et al. (2013), and are at a finer-resolution than
those developed by Maurer et al. (2002). The hydrologic pro-
jections that used this VIC configuration with LOCA climate
projections have been featured in three recent reports (Lukas
and Payton 2020; U.S. Bureau of Reclamation 2021; Vano
et al. 2020). These hydrologic projections used VIC version
4.2.c. From here on this VIC configuration is referred to as
VICLOCA-L13. Livneh et al. (2013) land cover types were
based on Advanced Very High Resolution Radiometer
(AVHRR) imagery acquired in the early 1990s and a Univer-
sity of Maryland classification scheme (Hansen et al. 2000)
(Fig. 2). The VICLOCA-L13 runs used leaf area index (LAI)

TABLE 1. Major differences between the two sets of VIC model parameters used in this paper.

VICLOCA-L13 VICBV

Vegetation source Advanced Very High Resolution
Radiometer (AVHRR) imagery and
University of Maryland classification
scheme

Moderate Resolution Imaging
Spectroradiometer (MODIS)
MOD12Q.005 product with the IGBP
classification scheme

LAI: Leaf area index Spatial: Constant between land cover
types

Spatial: Varies from grid cell to grid cell

Temporal: Varies from month to month
for some land cover types

Temporal: Varies from month to month

fVeg: Fractional area of the vegetation
within a VIC tile

Covers 100% of the vegetation tile. Does
not vary temporally.

Covers up to 100% of the vegetation tile
but often less. Varies from month to
month.

Albedo Spatial: Constant between land cover
types

Spatial: Varies from grid cell to grid cell

Temporal: Varies from month to month
for some land cover types

Temporal: Varies from month to month

Soil parameters Calibrated in Livneh et al. (2013). See
text for more details.

Calibrated in this paper using the
updated vegetation parameters from
Bohn and Vivoni (2019) against
naturalized and unregulated stream
gauges. See text for more details.
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FIG. 2. (a)–(c) VICLOCA-L13 spatial distribution of different land cover types. The gridcell fraction multiplied
by fVeg for different land cover types summed among forest, shrubs, and grassland land cover types. Gridcell
fraction is the fraction of the 1/168 grid cell covered by a land cover type, or the fractional area of a VIC vege-
tation tile; fVeg is the fractional area of the vegetation within a tile. In VICLOCA-L13 this is equal to 1. Forests
were defined as land cover types with an overstory. Shrubs combined open and closed shrublands. (g)–(i) As
in (a)–(c), but for VICBV. In VICBV, fVeg is less than or equal to 1. (d)–(f),(j)–(l) The leaf area index for dif-
ferent land cover types. The LAI shown here was a weighted average between different land cover types,
where the gridcell fractions were the weights. (m),(n) As in (a)–(c) and (g)–(i), but all land cover types were
combined to show the spatial distribution of vegetation and the fractional area of each land cover type in VI-
CLOCA-L13 and VICBV grid cells. (o) A true color satellite image from ESRI for comparison of vegetated areas
in (m) and (n). (p)–(r) The difference in LAI between VICLOCA-L13 and VICBV where they overlapped. The
fVeg and LAI varied based on month, therefore the average of LAI and fVeg during summer (JJA) was used
because that is when evapotranspiration rates were highest.
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values referenced from the vegetation library used in earlier
studies (Maurer et al. 2002; see supplemental material). These
LAI values were based on literature values for individual vege-
tation types instead of LAI values specified in the parameter file
for each grid cell. This makes the LAI decision in VICLOCA-L13

different from hydrologic model simulations shown in Livneh
et al. (2013). Albedos for each land cover type were derived
from the literature and were therefore spatially invariant be-
tween different land cover types. Furthermore, each land cover
type was assumed to cover the entire tile, or fraction of the grid
cell that the land cover type covered. Therefore, fVeg equaled 1,
as fVeg did not exist in this earlier version (Figs. 2a–c,m).

Soil properties used in VICLOCA-L13, such as the bulk density,
soil particle density, saturated hydraulic conductivity, and the
wilting/critical points were derived from the National Coopera-
tive Soil Survey’s State Soil Geographic Dataset (STATSGO)
(Livneh et al. 2013; Miller andWhite 1998). The VIC infiltration
and baseflow parameters were initially calibrated using VIC ver-
sion 4.0.3 in Maurer et al. (2002) and then updated using VIC
version 4.0.6 in climate change and forecasting applications
(Christensen et al. 2004; Christensen and Lettenmaier 2007;
Wood and Lettenmaier 2006) using a 1/88 dataset to a subset of
streamflow gauges in the ColoradoRiver basin. The updated 1/168
dataset in Livneh et al. (2013) used a Monte Carlo search to
calibrate the infiltration curve parameter b, themaximumvelocity
of baseflow parameter Dsmax, and the depth of the bottom soil
layerD3 tomatch the runoff ratios inMaurer et al. (2002).

Recently, new vegetation parameters were derived using
Moderate Resolution Imaging Spectroradiometer (MODIS)
observations from the 2001–13 period (Bohn and Vivoni 2019).
These new vegetation parameters used MODIS observations to
derive fractional vegetation within VIC vegetation tiles, which
improved estimated evapotranspiration within the North Amer-
ican monsoon area against Ameriflux observations (Bohn and
Vivoni 2016, 2019). From Bohn and Vivoni (2019), we selected
the land cover classification from MODIS that used the mode
of the vegetation classes from 13 annual classification maps
(2001–13) (MOD_IGBP.mode). MOD_IGBP.mode was derived
from the MOD12Q.005 product that used the International
Geosphere–Biosphere Programme (IGBP) classification scheme.
We selected the MOD_IGBP.mode over the National Land
Cover Dataset (NLCD) maps that were also generated in Bohn
and Vivoni (2019) as the mode provided the most common rep-
resentation of vegetation over the 2001–13 period (NLCD was
only derived for specific years) and MODIS based parameters
were used in the Bohn and Vivoni (2016) study. We tested the
MODIS and NLCD products and found similar streamflow per-
formance between them. In addition to the introduction of the
fractional vegetationwithinVIC vegetation tiles, the newMODIS
parameters from Bohn and Vivoni (2019) updated the seasonal
cycle of albedo andLAI to varymonthly.

The new MODIS derived VIC vegetation parameters from
Bohn and Vivoni (2019) differ from VICLOCA-L13 in three ways.
First, the MODIS derived parameters from Bohn and Vivoni
(2019) have LAI and albedo values that vary spatially, even be-
tween areas with the same land cover type. Second, MODIS de-
rived LAI values are now generally lower in forested and
grassland areas (Figs. 2p–r). And third, in the MODIS derived

parameters, the fVeg parameter is now spatially and temporally
varying, which allows for bare soil evaporation to occur in addi-
tion to transpiration within a vegetation tile (Bohn and Vivoni
2016) (Figs. 2m,n).

The MODIS derived VIC vegetation parameters from Bohn
and Vivoni (2019) were combined with a new streamflow cali-
bration (section 2d) across the Colorado River basin, and the
resulting parameter set is referred to as VICBV throughout the
remainder of the paper. Soil parameters for VICLOCA-L13 and
VICBV were identical prior to model calibration. VICBV con-
tains the soil calibration (section 2e) performed in this paper.

In both VICLOCA-L13 and VICBV, the simulated total runoff
(surface and baseflow) was used to drive the mizuRoute stream-
flow routing model (Mizukami et al. 2016). Streamflow was
routed at a daily time step through the reach-defined (rather
than grid-based) river network defined in the United States
Geological Survey (USGS) Geospatial Fabric dataset (Viger and
Bock 2014). MizuRoute used the impulse response function–
unit hydrograph procedure, which mimicked the Lohmann et al.
(1996) routing model.

e. Calibration

The calibration was done using VIC 5.1.0 rc2 with the
MODIS derived VIC vegetation parameters from Bohn and
Vivoni (2019). Prior to calibration the soil parameters were
identical to VICLOCA-L13 and only the vegetation parameters
were different. The calibration sought to adjust the soil parame-
ters (Table 2) to minimize errors in simulating daily and monthly
streamflow (depending on availability). The dynamically dimen-
sioned search (DDS) algorithm (Tolson and Shoemaker 2007)
within the program Ostrich (Matott et al. 2013) was used to ad-
just the soil parameters. The calibration was performed for indi-
vidual basins, starting with the headwater USGS gauges and
then followed by another USGS gauge, or a naturalized flow
point, downstream from one another. Contributing VIC grid
cells were identified, and the soil parameters were adjusted to
optimize the Kling–Gupta efficiency (KGE) (Gupta et al. 2009)
using daily values for the headwater gauges and monthly values
for the naturalized flow points. The KGE combines the correla-
tion, bias, and ratio of variances, with a value of 1 indicating a
perfect model simulation. The maximum KGE achieved after
each iteration within DDS for each gauge is shown in the
supplemental material (Figs. S1 and S2). DDS was run until the
KGE appeared to have reached a maximum value. Once an up-
stream basin was calibrated, those soil parameters were held
constant and the next basin downstream was calibrated using
the remaining contributing grid cells. Each iteration during cali-
bration was initialized with a 10-yr spinup period (water year
1991–2001). The KGE was optimized for water years 2001–10.
The final soil parameters before and after calibration are shown
in the supplemental material (Fig. S3).

3. Results

a. Model calibration

The uncalibrated VICBV model that contained the new veg-
etation parameters produced a median KGE value of 0.59
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and a standard deviation of 1.66 across the 29 naturalized
streamflow points between 1960 and 2013. After the soil pa-
rameters were calibrated, the VICBV model resulted in a me-
dian KGE value of 0.82 and a standard deviation of 0.49 at
the 29 naturalized flow points between 1960 and 2013 (Fig. 3).
The VICLOCA-L13 configuration produced a median KGE
value of 0.75 and a standard deviation among KGE values of
0.47 across the 29 naturalized flow points between 1960 and
2013. At mainstem locations (Fig. 1) such as the Green River
at Green River, Utah (UT); the Colorado River near Cisco,
UT; San Juan River near Bluff, UT; Lees Ferry, AZ; and the
Colorado River above Imperial Dam, AZ, VICBV resulted in
KGE values of 0.87, 0.9, 0.92, 0.83, and 0.85, respectively.
VICLOCA-L13 resulted in KGE values of 0.84, 0.9, 0.91, 0.76,
and 0.82, respectively (Fig. 4).

Across the headwater USGS gauges, the calibration did not
result in a notable improvement in streamflow simulations
compared to the uncalibrated VICBV. The median KGE val-
ues based on monthly streamflow values before the calibra-
tion was 0.16 and after calibration it was 0.17 with a reduction
in the standard deviation of 0.1 (3.18 from 3.28). At headwa-
ter locations, VICBV performed worse than VICLOCA-L13,

most notably in the lower Colorado River basin. VICLOCA-L13

had a 0.3 median KGE (1.5 standard deviation). The VICBV

model configuration produced better or comparable perfor-
mance to VICLOCA-L13 configuration in some locations, but
performed worse in other areas (Fig. 3).

In general, the VICBV configuration improved the timing of
high streamflow values from year to year (Fig. 4) due to increased
snow ablation rates in forested areas. Increased snow ablation
rates were the result of less radiation attenuation by the canopy
from the introduction of a fractional canopy area and generally
lower LAI values (Fig. 2). In summary, VICLOCA-L13 showed bet-
ter streamflow performance in some locations while VICBV

showed better performance at other locations making neither pa-
rameter dataset comprehensively better than the other.

b. Hydrologic projections from different VIC
configurations

1) ROUTED STREAMFLOW PROJECTIONS

(i) Changes in annual streamflow volume

The Colorado River basin contains a significant amount of
reservoir storage (section 2a), making projected changes in

TABLE 2. Calibration parameters and the range and initial value within the model parameter values.

Soil parameter name Definition Search range (initial value)

b (}) Variable infiltration curve parameter 0.001–0.4 (0.2)
Dsmax (mm day21) Maximum velocity of baseflow 0.001–30.0 (15)
Ds (fraction) Fraction of Dsmax where nonlinear baseflow begins 0.001–1.0 (0.001)
Ws (fraction) Fraction of maximum soil moisture where nonlinear baseflow occurs 0.5–1.0 (0.9)
Soil depth 1–3 (m) Thickness of each soil layer 0.1–0.5 (0.5)

0.5–1.5 (1)
0.5–3.0 (2)

Root fraction multiplier (}) Adjusted the bottom soil layers root fraction with a multiplier and
normalized the remaining soil layers root fraction so that the three
soil layers root fraction summed to 1

0.4–6.0 (1)

FIG. 3. Kling–Gupta efficiency (KGE) values from VICBV and VICLOCA-L13 at the 66 calibration points. The 29 naturalized streamflow
values are shown in circles. The 37 USGS headwater water stream gauges are shown with squares. For the 29 naturalized streamflow sites,
the KGE was computed between 1960 and 2013. For the 37 USGS headwater stream gauges, the KGE was calculated from 1960, or the
beginning of the observational period, until 2013.
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long-term annual streamflow volume more important than
short-term variability for many water users. There were nota-
ble differences between the VICLOCA-L13 and VICBV configu-
rations in their ensemble mean, end-of-century (2070–99),

annual streamflow volume projections (Figs. 5 and 6). At
Lees Ferry, AZ, which receives 92% of the streamflow that
reaches the Imperial Dam (Lukas and Payton 2020), the
VICLOCA-L13 configuration’s ensemble mean resulted in a

FIG. 4. Routed VIC streamflow from the Livneh et al. (2013) VIC parameters using the vegetation library (blue) and using the Bohn
and Vivoni (2019) MODIS-based vegetation parameters after calibration at four mainstem locations in the Colorado River basin. KGE
metrics are calculated from 1960 to 2013. Monthly average flows are calculated from 1960 to 2013.
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11.7% decrease in annual streamflow volume relative to the
historical period (1960–2005) while the VICBV configuration’s
ensemble mean showed little change in annual streamflow
volume relative to the historical period (10.4%).

Breaking apart the flow at Lees Ferry into different subba-
sins, the Colorado River and San Juan River projected the
most substantial decreases in annual streamflow volume.
VICLOCA-L13’s projected ensemble mean showed a decrease in
annual streamflow volume of 15.8% in the Colorado River and
a 23.1% decrease in the San Juan River. In contrast, the VICBV

ensemblemean projected a decrease in annual streamflow volume
of 8.5% in the Colorado River and a 6.3% decrease in the San
Juan River. In the Green River, VICLOCA-L13’s ensemble mean
projected a decrease in annual streamflow volume of 6.7% while
VICBV’s projected ensemblemean showed an increase of 9.7%.

The spread in the LOCA ensemble when run through
VICLOCA-L13 resulted in a narrower range of projected changes
in streamflow volume than when the LOCA ensemble was run
through VICBV. For instance, at Lees Ferry, the VICLOCA-L13

ensemble showed projected changes in annual streamflow vol-
ume of as low as 240% and as high as 124% (range: 64%) by
the end of the century. Meanwhile, the VICBV ensemble pro-
jected changes in annual streamflow volume of as low as 237%
and as high as161% (range: 98%) by the end of the century rel-
ative to historical annual streamflow volumes. This is further dis-
cussed in section 4d.

(ii) Changes in timing of peak streamflow

The end-of-century ensemble mean for both VICLOCA-L13

and VICBV showed a shift to earlier streamflow (Figs. 5 and
6). For each ensemble member we computed the average
streamflow for each day of the year within the end of the cen-
tury and historical periods for VICLOCA-L13 and VICBV. From
here, we took the difference in days of peak streamflow tim-
ing between the end-of-century and historical time periods
across all ensemble members. At Lees Ferry, VICLOCA-L13

ensemble mean showed a shift in peak streamflow timing of
24 days while the VICBV ensemble mean shifted by 18 days.
Mainstem stream gauges upstream of Lees Ferry, AZ, along
the Green River, Colorado River, and the San Juan River
showed similar changes in peak streamflow timing along each
individual river (Fig. 6, bottom panels). The ensemble spread
in VICLOCA-L13 at Lees Ferry showed a projected shift in ear-
lier peak streamflow from 14 to 57 days while the ensemble
spread from VICBV was a shift of 11–50 days earlier.

2) GRIDDED HYDROLOGIC PROJECTIONS

The ensemble mean of 29 LOCA downscaled GCMs pro-
jected a 5.68C areal average increase in temperature by the
end of the century in the upper Colorado River basin com-
pared to the historical period 1960–2005 (Figs. 7c,d). Tempera-
ture increases were greatest in both the upper Colorado River
basin and Green River subbasin. In addition, the LOCA en-
semble mean projected an increase in precipitation of 17 mm
(4%) (up to maximum of 15%) with the greatest increases in
the Green River subbasin (32 mm, 8%), more specifically in
the Uintah and Wind River Mountains, as well as the Park

Range in south-central Wyoming and north-central Colorado
(Figs. 1 and 7a,b, Table 3).

The greatest differences between VICLOCA-L13 and VICBV

was in their projected increases of simulated evapotranspiration
(Figs. 7f,g, Table 3). During the historical period, VICLOCA-L13

simulated a 330 mm areal average of evapotranspiration (83%
of precipitation) annually over the upper Colorado River basin.
By the end of the century, VICLOCA-L13 simulated an areal av-
erage increase of 24 mm. VICBV simulated less evapotranspira-
tion historically (324 mm) and projected an increase in areal
average evapotranspiration of 17 mm across the upper Colo-
rado River basin (Table 3). The greatest differences in evapo-
transpiration occurred in the seasonal snow zone (defined here
as where snow is present 180 days of the year). Within the sea-
sonal snow zone, VICLOCA-L13 simulated an areal average in-
crease of 121 mm while VICBV simulated an increase of 65 mm.

In the Green River subbasin, where there was the greatest in-
crease in projected precipitation, the ensemble mean from
VICLOCA-L13 simulated a larger increase in evapotranspiration
than VICBV. Increased projected precipitation and less of an
increase in evapotranspiration within VICBV led to a posi-
tive change in runoff for VICBV. The ensemble mean from
VICLOCA-L13 in the Green River projected a 25% change
in runoff while the ensemble mean from VICBV projected a
7% increase in runoff. In the Colorado River and San Juan
subbasins within the upper Colorado River basin, the ensemble
mean from VICLOCA-L13 also projected more of an increase in
future evapotranspiration than VICBV’s ensemble mean. Over-
all, by the end of the century, VICLOCA-L13 projected more of an
increase in evapotranspiration than VICBV, which led to further
decreases in projected streamflow.

The 5.68C increase in temperature throughout the upper
Colorado River basin led to a decrease in future SWE accu-
mulation. In general, throughout the domain VICLOCA-L13

simulated higher peak SWE than VICBV, historically and in
the future. Despite differences in projected changes of peak
SWE, both VIC configurations showed similar differences in
their projected decrease of peak SWE (274 mm versus
265 mm, Table 3). Within the seasonal snow zone,we found that
depending on location, VICLOCA-L13 or VICBV simulated greater
decreases in peak SWE but on average VICLOCA-L13 simulated a
slightly greater decline in SWE.However, within the seasonal snow
zone, differences in the evapotranspiration change signal between
VICLOCA-L13 and VICBV were substantial (Figs. 7f,g) and more
closely connected to the changes in runoff (Figs. 7j,k).

4. Discussion

In the following section, we discuss reasons why VICLOCA-L13

and VICBV led to different projections of evapotranspiration
and streamflow by the end of the century. We also discuss rea-
sons for the spread in projected changes, compare with previous
work, and last, discuss avenues for future work.

a. Sensitivity of hydrologic variables to changes
in vegetation

To understand how different LAI, fVeg, and albedo parame-
ters affect end-of-century hydrologic projections relative to the
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FIG. 5. (left) Projected, end-of-century (2070–99) monthly average routed streamflow ensembles from LOCA and VIC using the cali-
brated Bohn and Vivoni (2019) parameters (VICBV) and the Livneh et al. (2013) parameters with the vegetation library (VICLOCA-L13).
(right) End-of-century monthly average streamflow projections minus the 1960–2005 streamflow projections. Thick solid lines show the en-
semble mean, while thin lines show the individual ensemble members. The black solid line represents the 1960–2005 historical monthly av-
eraged streamflow.
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historical period within VIC, we set up a series of experiments
within an individual grid cell. Within the main text, the indi-
vidual grid cell experiment used a grid cell near Telluride,
Colorado (CO) (lat: 37.90625, lon:2107.71875) (Fig. 1), as this
grid cell showed a substantial difference in evapotranspiration,
runoff, and SWE between VICLOCA-L13 and VICBV (Fig. 7).
Note the experiment is repeated for different grid cells, which is
discussed later and in the supplemental material. For simplicity,
these experiments used a single LOCA ensemble member
(NorESM1-M) to force VIC with different vegetation parame-
ters. We chose the LOCA downscaled NorESM1-M GCM be-
cause its projected change in annual streamflow volume was
similar to the ensemble mean. The first experiment changed

LAI and fVeg, while the second experiment changed albedo
and fVeg. For each experiment, two VIC vegetation scenarios
were configured, one with an evergreen needleleaf land cover
type while the other with grassland. We changed LAI, albedo,
and fVeg while all other vegetation parameters remained consis-
tent with the VICBV parameter dataset. Each experiment was
run through VIC 5.1.0 rc2. LAI was changed from 0.1 to 6.6 in
0.5 increments, fractional vegetation area was changed from
0 to 1 in 0.1 increments, and albedo was changed from 0.05
to 0.5 in increments of 0.05.

The LAI versus fVeg experiment showed that both parame-
ters influenced the hydrologic projections by the end of century
(Fig. 8). For instance, as LAI or fVeg increased, so too did the

FIG. 6. (top) LOCA and VIC’s annual streamflow volume projections (2070–99 minus 1960–2005) at the 29 natural-
ized stream gauges using the ensemble mean from the calibrated Bohn and Vivoni (2019) parameters (VICBV) and
the Livneh et al. (2013) parameters with the vegetation library (VICLOCA-L13). (bottom) The projected change in
peak streamflow timing from the ensemble mean from VICBV and VICLOCA-L13.
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projected change in total evapotranspiration (Figs. 8a,i). Con-
versely, as LAI or fVeg increases, projected changes in total
runoff decreased (Figs. 8h,p). Furthermore, because the ever-
green needleleaf land cover type contains an overstory, pro-
jected changes in peak SWE were affected by LAI and fVeg:
LAI is embedded in the snow interception parameterization
and controls how much shortwave radiation is attenuated
(Storck 2000; Andreadis et al. 2009), as well as how much snow-
fall is intercepted and potentially lost to sublimation.

The evergreen needleleaf land cover type showed a substan-
tially greater change in transpiration (Fig. 8b) than transpiration
from grasslands (Fig. 8j), or changes in bare soil evaporation
(Figs. 8c,k). In addition, forested areas (Figs. 2a,j) generally cor-
responded to areas with the greatest differences in projected
evapotranspiration change (Figs. 7f,g). The VICLOCA-L13 param-
eters have a greater fractional forest area (with fVeg 5 1) than
VICBV (Figs. 2a,j) and therefore a larger fraction of the grid cell
simulated transpiration, which resulted in the VICLOCA-L13

FIG. 7. (first column),(fourth column) Ensemble mean of LOCA downscaled climate data or annual average/maximum simulated
fluxes/states (1960–2005) from two different VIC configurations VICBV and VICLOCA-L13, respectively. (second column),(third column)
Changes in the ensemble mean of downscaled LOCA climate data or changes in annual average/maximum of simulated fluxes/states from
the two different VIC configurations (2070–99 minus 1960–2005), respectively.
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configuration projecting a greater increase in evapotranspi-
ration by the end of the century than VICBV. Furthermore,
the VICLOCA-L13 parameters also had higher LAI values
than VICBV for forested and grassland areas (Figs. 2p,r). A
higher LAI value corresponded to a greater increase in end-
of-century evapotranspiration although changes in LAI were
more sensitive for the evergreen needleleaf forest (Figs. 8a,i).
This further supported the relationship between forested areas
(Figs. 2a,j) and the differences in evapotranspiration between
VICLOCA-L13 and VICBV (Figs. 7f,g).

This analysis was repeated for nine different historical
Köppen–Geiger climate classification regions (Beck et al. 2018)
within the Colorado River basin (Figs. S4–S13). Here the analy-
sis also included an open shrubland vegetation classification
which showed similar hydrologic change signals due to differ-
ences in LAI and fVeg as grassland areas. In general, the most
substantial positive relationships between evapotranspiration,
LAI, and fVeg, occurred in mountainous forested areas of the
seasonal snow zone within the upper basin where the ensemble
mean projected increases in precipitation by the end of the cen-
tury (Fig. 7b). This is consistent with findings from Bennett et al.
(2018b), who showed that hydrologic change signals were
most sensitive to VIC parameters such as fVeg and LAI in
snow-dominated regions. Forested areas generally overlapped
with the seasonal snow zone, which is also the area with high-
est runoff ratios as snowmelt comes at a time when potential
evapotranspiration is lower than later in the summer and the
snowmelt provides water into saturated soils. Therefore, these
areas are not water limited, whereas in other areas of the Col-
orado River basin the majority of the water is lost to evapo-
transpiration. In VICBV, there was substantially less forested
area relative to VICLOCA-L13 (Figs. 2a,g) and therefore despite
simulating similar amounts of evapotranspiration historically,
VICLOCA-L13 simulated a greater increase in end-of-century
evapotranspiration (Table 3, Figs. 7f,g) as a result of differ-
ences in LAI and forest area (Figs. 2 and 8). Evergreen forests
produced the greatest changes in evapotranspiration for the
same climate and location relative to grassland and shrublands
due to deeper roots (Figs. 8a,i).

Last, differences in albedo between VICLOCA-L13 and
VICBV were relatively small. For instance, across the Colorado
River basin differences in evergreen needleleaf albedo during
summer (JJA) was on average 0.01 with a maximum differ-
ence of 0.03. Meanwhile other land cover types showed similar
differences in albedo, generally within 0.1 of each other. Sensi-
tivity to end-of-century changes in annual average evapotrans-
piration were also relatively small (Fig. S14). For instance, a 0.2
difference in an evergreen needleleaf’s albedo resulted in about a
12 mm difference in annual average evapotranspiration by the
end of the century.

b. Hydrologic projections with different VIC versions and
effect of soil calibration

There were several differences between VICLOCA-L13, which
used VIC version 4.2.c, and VICBV, which used VIC version
5.1.0.rc2. The major changes from VIC 4 to VIC 5 were to im-
prove the computational infrastructure (e.g., improving file
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read and write operations, parallelization, etc.). The changes
in the VIC physics code between version 4.2.c and 5.1.0.rc2
were minor and included small changes to the surface emissiv-
ity values and a bug fix to appropriately apportion the root
fraction to individual soil layers. An additional difference be-
tween our VICBV simulations and VICLOCA-L13 was that we
used a 3-h time step instead of a 1-h time step. More explicit
detail and the effect of these changes are discussed in the
supplemental material (Text S3; Figs. S15 and S16). To briefly
summarize the results here, the changes in the root fraction,

surface emissivity, and time step led to an increase in evapo-
transpiration during the historical period (Fig. S15; red line
versus blue line). By the end of the century, these different
model decisions led to an increase in annual streamflow vol-
ume change relative to the VICLOCA-L13 configuration but did
not change the streamflow timing (Fig. S16; orange line versus
blue line). For instance, at Lees Ferry, AZ, the change in an-
nual streamflow volume from the different version of VIC and
time step was 5.9% (Fig. S16; orange line versus blue line);
however, the change caused by changing the vegetation

FIG. 8. End-of-century (2070–99) annual average change in hydrologic fluxes and states from historic conditions (1960–2005) for a single
grid cell near Telluride, CO, with different vegetation parameters. Note the different color bar scales for evergreen needleleaf and grass-
land land cover types. Red and orange markers represent the JJA fractional vegetation and LAI values that existed near Telluride, CO,
for an evergreen needleleaf and grassland land cover type within VICBV and VICLOCA-L13 datasets, respectively.
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parameters alone was 10.9% (Fig. S16; orange line versus pur-
ple line). Therefore, the different version of VIC between
VICLOCA-L13 and VICBV had an influence but was not the
predominant reason for differences in the end-of-century
streamflow projections.

The change in vegetation parameters prior to soil calibra-
tion led to higher snowmelt rates, less evapotranspiration, and
an earlier increase in the hydrograph’s rising limb (Figs. S15–
S17). In contrast, soil calibration did not change the timing of
streamflow, but instead increased the total amount of evapo-
transpiration and decreased the projected change in annual
streamflow volume. For instance, prior to soil calibration, the
projected change in streamflow volume at Lees Ferry was
15%, while after calibration it was 10.4%. This is consistent
with results fromMendoza et al. (2015), who showed that cali-
bration reduces intermodel differences, but that even after
calibration, intermodal differences remain in the projected
hydrologic change signal. In conclusion, the largest single dif-
ference between VICLOCA-L13 and VICBV was due to changes
to the vegetation parameters, notably LAI and the fractional
vegetation.

c. Interpreting the spread in end-of-century hydrologic
projections

This work showed that the choice in vegetation decisions
increased the spread in the ensemble [section 3b(1)]. For in-
stance, at Lees Ferry, the VICBV ensemble showed projected
changes in annual streamflow volume of as low as 237% and
as high as 61% by the end of the century relative to historical
annual streamflow volumes (1960–2005). This variability was
primarily due to projected changes in precipitation from dif-
ferent GCMs (Figs. S18 and S19). Previous work showed that
small changes in precipitation can substantially impact future
hydrologic projections as a 10% change in precipitation can
lead to a 20%–30% change in streamflow (Hoerling et al.
2019; Vano et al. 2012). Furthermore, the temperature and
precipitation elasticity for streamflow at Less Ferry, AZ,
changed from 26.5% 8C21 and 2.3% %21 in VICLOCA-13 to
25.8% 8C21 and 2.6% %21 in VICBV, respectively. There-
fore, VICBV had less of a decrease in streamflow for an in-
crease in temperature than VICLOCA-L13 but produced more
streamflow with increases in precipitation (Figs. S18 and S19).
Additionally, annual streamflow projections that projected an
overall decrease in precipitation had similar changes in
streamflow between VIC configurations (Table S3). For ex-
ample, the GCM that projected the greatest decline in stream-
flow at Lees Ferry, AZ showed a 240% decrease in annual
streamflow with VICLOCA-L13 and237% with VICBV. In con-
trast, projections that showed an increase in streamflow, or
less of a decrease in streamflow, showed a greater difference
between VIC configurations (Figs. S18 and S19). This is con-
sistent with results from Bennett et al. (2018b) who found
that hydrologic projections with VIC are more sensitive to
changes in parameters in areas with large precipitation trends.

Last, we note that the spread in annual streamflow volume
projections highlights that substantial differences exist based
on hydrological model decisions. A more significant uncertainty

within the impact modeling chain on projected Colorado River
basin annual streamflow volumes is from the GCM precipitation,
which in the upper Colorado River basin varied from as low as
212.9% to as a high as 134.6% change. However, the vegeta-
tion decisions did increase the sensitivity of the model to precipi-
tation changes (Figs. S18 and S19).

d. Results in context of recent work

Recent work has utilized similar vegetation datasets (Bohn
and Vivoni 2016, 2019) to look at future hydrologic projec-
tions over the Colorado River basin (Whitney et al. 2023) as
well as the sensitivity of future hydrologic projections with
VIC to different parameter decisions (Bennett et al. 2018b).
We found that future hydrologic projections using eight
LOCA downscaled CMIP5 GCMs under the RCP8.5 emis-
sions scenario from Whitney et al. (2023) also showed a sys-
tematic increase in projected annual streamflow volume
relative to projections from VICLOCA-L13. However, projec-
tions and model elasticities to temperature and precipitation
changes were more similar to projections in VICLOCA-L13 than
in our VICBV configuration. We note that there are methodo-
logical decisions in Whitney et al. (2023) that differ from those
within this paper. For instance, Whitney et al. (2023) had a
different calibration strategy, used an older version of VIC
(VIC 5.0, which has a different way of apportioning the root
fraction), and used time-varying vegetation parameters be-
tween 2000 and 2016. For instance, the time-varying vegeta-
tion parameters which were used in Whitney et al. (2023)
contained up to 10% more fractional forest area and greater
LAI values (;0.2) in the future (after 2016) and slightly less
fractional forest area in the historical time frame (prior to
2000) (Figs. S20 and S21). This reinforces the idea that hydro-
logic projections from hydrologic models need to accurately
characterize the vegetation in the historical period and in the
future to reduce our uncertainty in hydrologic projections. In
addition, Bennett et al. (2018b) showed that the choice of the
soil parameters can influence the change in runoff and evapo-
transpiration. We note that the soil parameters from this paper
and Whitney et al. (2023) are different and this likely contrib-
uted to differences in VICBV and results in Whitney et al.
(2023). Furthermore, this suggests that the interplay between
soil parameters and vegetation parameters on the hydrologic
change signal may be more complex.

e. Future work

There is a clear and long-standing challenge in obtaining spa-
tiotemporal vegetation and soil parameters that combine to ac-
curately simulate evapotranspiration across large domains like
the Colorado River basin and therefore further investigation is
needed. For instance, while comparisons to satellite imagery
(Fig. 2, Fig. S22) look better, and previous work that showed
that VICBV vegetation parameters improved evapotranspira-
tion estimates at eddy covariance sites in the North American
monsoon region (Bohn and Vivoni 2016), both VICLOCA-L13

and VICBV had similar streamflow performance historically,
making it unclear what set of VIC parameters more properly
represents runoff processes. Additionally, previous studies have
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suggested that LAI values from MODIS are too low (Jensen
et al. 2011; Chen et al. 2005; Tian et al. 2004) but as far as we
are aware MODIS LAI values have yet to be evaluated over
the Colorado River basin. Moreover, future work should focus
on improving the algorithm for estimating fractional vegetation
from remotely sensed data (Bennett et al. 2018b). Estimates of
fractional forest area and LAI from satellite imagery (which al-
lows us to cover longer space and time periods) could be com-
pared to lidar-derived estimates of fractional vegetation area.
Further compounding this challenge is properly representing
vegetation dynamics in the future. Forest disturbances, resulting
from heat and drought induced tree mortalities, wildfire, and
insect outbreaks, are projected to increase in the future
(Allen et al. 2010; McDowell et al. 2018; Williams et al. 2013;
Anderegg et al. 2022) and forest disturbances can exacerbate
projected decreases in streamflow, especially when combined
with changes in climate (Bennett et al. 2018a).

Challenges also persist in model calibration and the fidelity
of the meteorological datasets used to calibrate the model. For
instance, snow albedo parameters are spatially consistent
throughout the modeling domain and therefore VIC as cur-
rently implemented cannot account for the spatiotemporal vari-
ability of dust on snow in the basin (Deems et al. 2013; Painter
et al. 2010, 2018), which is generally more prevalent in the San
Juan Mountains than the northern Colorado Rockies. Addi-
tionally, at SNOTEL sites within the upper and lower Colorado
River basin, the October through peak SWE precipitation to-
tals from the Livneh et al. (2013) dataset were less than ob-
served peak SWE at 28% of the SNOTEL sites suggesting that
no changes to the model parameters would allow for SWE to
be properly simulated. These two factors challenged model cali-
bration against available SNOTEL data and the proper simula-
tion of evapotranspiration and runoff, especially in many of the
headwater locations.

Additional challenges persist regarding soil calibration. Our
traditional individual catchment calibration approach resulted
in a spatial patchwork of model parameters based on avail-
able streamflow gauges (Fig. S3). Parameter regionalization
techniques such as the multiscale parameter regionalization
(MPR; Samaniego et al. 2010) have been shown to provide a
promising path forward to seamlessly estimate soil parame-
ters over large domains (Gou et al. 2021; Rakovec et al. 2016,
2019; Samaniego et al. 2017). Mizukami et al. (2017) applied
MPR to the VIC model for the CONUS-domain parameter esti-
mation, showing deteriorated model performance in the Colo-
rado River basin, relative to the other humid wet areas in
CONUS. To improve streamflow simulations, further investiga-
tion of the MPR application to the VIC model (i.e., predictors,
transfer functions, and scaling operators) is needed. In addition,
the calibration strategy did not explicitly assess whether the opti-
mized parameter sets could be as valid in future conditions as in
historical ones. Calibrations that purposefully emphasize histori-
cally dry or wet periods might be more appropriate to provide
realistic streamflow projections in a future climate, depending
on projected conditions (Vaze et al. 2010). Further research into
trend-response and parameter estimation strategies across all as-
pects of the modeling system is strongly recommended.

Last, we note that to explore the full range of streamflow pro-
jections, additional emissions scenarios, downscaling methods,
hydrologic models, and the CMIP6 dataset should be explored
(Samaniego et al. 2018, 2019; Vano et al. 2012, 2014). RCP8.5
was used here to represent a high emissions, high-risk scenario,
that amplified the model’s sensitivity relative to other emission
scenarios (Hausfather and Peters 2020). Bias corrected and
downscaled CMIP6 data, which can be used for hydrologic pro-
jections are forthcoming. Initial comparisons between CMIP5
and CMIP6 over western North America show similar precipita-
tion and temperature changes in the ensemble mean (Li et al.
2021; Lukas and Payton 2020). However, more explicit, regional
comparisons between CMIP5 and CMIP6 over the Colorado
River basin should be explored. Therefore, these results suggest
that policy makers should consider the sensitivity of the hydro-
logic projections to the vegetation decisions, but simultaneously
understand that to determine the full range of future streamflow
projections, additional emissions scenarios, hydrologic models,
and climate scenarios should be explored.

5. Conclusions

We combined a recently published, updated vegetation data-
set based on MODIS satellite imagery with a basin-by-basin
calibration of VIC’s soil parameters to produce a new VIC
model configuration over the Colorado River basin. After cali-
bration, the MODIS-informed VIC configuration showed simi-
lar streamflow performance to the previous VIC configuration
used by decision makers to make informed climate change deci-
sions about future water resources within the basin. Despite
similar historic streamflow performance, the ensemble mean
from the MODIS-based VIC configuration projected an end-
of-century annual streamflow volume change of 0.4% at Lees
Ferry, AZ, compared to the historical period (1960–2005).
This projected change in streamflow is in contrast to prior
ensemble mean projections that were used in recent climate
impact studies that showed an 11.7% decline. Furthermore,
the MODIS-based VIC configuration resulted in a greater
spread in the projected changes of annual streamflow volume.

These results highlighted the need to accurately represent
the vegetation characteristics and distribution in climate change
studies, especially in arid environments. The MODIS-based pa-
rameters generally contained lower leaf area index values and
also introduced fractional vegetation within each vegetated
area of the grid cell. These new MODIS parameters resulted in
evapotranspiration increases by the end of the century that
were less than in the previous VIC configuration. Evapotranspi-
ration differences were primarily in the upper basin’s mountain-
ous and forested areas, or in areas with high runoff ratios.
Therefore, the differences in projected evapotranspiration
caused substantial differences in end-of-century streamflow
projections. These differences were primarily due to lower leaf
area index values, the representation of fractional vegetation
within the MODIS-based VIC tiles, and a general reduction in
the forested area. The substantial difference in end-of-century
streamflow projections signified the need to accurately repre-
sent evapotranspiration especially as temperatures increase and
vegetation changes.
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